
CSCI 210: Computer Architecture

Lecture 11: Procedures

Stephen Checkoway

Slides from Cynthia Taylor

1

CS History: The Subroutine
• A group of instructions we can re-run as a unit
• Conceived of by Alan Turing in 1945,

independently implemented by Kay McNulty and
others on the ENIAC in 1947, formally developed
by Maurice Wilkes, David Wheeler, and Stanley
Gill in 1952.

• In early computers, loaded as strips of paper
tape or collections of punch cards that would be
reinserted into the machine

• Later developed as macros, pieces of code the
assembler would copy into multiple places
during assembly

Subroutines/functions: A high-level view

• Code in programs is organized in functions

• Functions take arguments

• Functions can call functions, including themselves

• Functions have local variables that are not shared with other
functions, including other invocations of the same function
(i.e., recursive calls to a function have different local variables)

• Functions return to the function that called them

Implications

• Functions take arguments: Need a way to access arguments

• Functions can call functions: Need a way to pass arguments

• Functions have local variables: Need per-function-call memory
to hold the variables

• Functions return: Need to know what the return address is

Activation Records

• A per-function-call data structure that holds

– Local variables/temporary storage space

– Return address

– Saved register values

– Arguments for the next function call

Stack of activation records

• Each time a function is
called, a new activation
record is pushed onto a
stack

• Each time a function
returns, the activation
record is popped off the
stack

Local variables/temporary space for main

Return address: where main returns

Saved register values

Arguments for print_string call

main() calls print_string() which calls print_char()

Local variables/temporary space for print_string

Return address: where in main to returns

Saved register values

Arguments for print_char call

Local variables/temporary space for print_string

Return address: where in print_char to return

Saved register values

Arguments for functions called by print_char

m
ai

n
p

ri
nt

_s
tr

in
g

p
ri

nt
_c

h
ar

From theory to practice

• Activation record is the
name we give to the
data structure

• A stack frame is how an
activation record is
realized in software

Recall from Last Class

• Fetch/Decode/Execute cycle
– IR = Memory[PC]
– PC = PC + 4

• Branch instructions change PC value conditionally
– beq, bne

– Used with slt

• Jump instructions always change PC value
– j, jal, jr

Jump and Link

 jal label

– Address of following instruction put in $ra

– Jumps to target address given by label

11

What is the most common use of a jal instruction and
why?

Most
common use

Best answer

A Procedure
call

Jal stores the next instruction in your current
function so the called function knows where to
return to.

B Procedure
call

Jal enables a long jump and most procedures are a
fairly long distance away

C If/else Jal lets you go to the if while storing pc+4 (else)

D If/else Jal enables a long branch and most if statements
are a fairly long distance away

E None of the above

Procedure Call Instructions

• Procedure call: jump and link

 jal ProcedureLabel

– Address of following instruction put in $ra

– Jumps to target address

• Procedure return: jump register

 jr $ra

– Copies $ra to program counter

Procedure Calling

1. Place arguments in registers: $a0, $a1, $a2, $a3

2. Transfer control to procedure: jal label

3. Allocate stack frame for procedure (when necessary)

4. Perform procedure’s operations

5. Place result in register for caller: $v0

6. Deallocate the stack frame (when allocated)

7. Return to place of call: jr $ra

What does a procedure call look like?

addten:

 addi $v0, $a0, 10

 jr $ra

 …

 move $a0, $s2

 jal addTen

 # Now v0 holds $s2 + 10

 …

What, if anything, is wrong with this code

move $a0, $t2

move $a1, $t3

jal add

move $t4, $v0

sub $t4, $t4, $t2

#add $a0,$a1

add: add $t2, $a0, $a1

 move $v0, $t2

 jr $ra

A. Not adding correctly

B. $t2 is overwritten in add

C. We are not saving the return
address before the procedure

D.There is nothing wrong with this
code

Register values across function calls

• “Preserved” registers

– You can trust them to persist past function calls

• Functions must ensure not to change them or to restore them if they do

• Not “Preserved” registers

– Contents can be changed when you call a function

• If you need the value, you need to put it somewhere else

MIPS Register Convention
Name Register

Number
Usage Preserve

on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments no

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

Programmer’s
responsibility

“Spill” and “Fill”

• Spill register to memory
– Whenever you have too many variables to keep in registers

– Whenever you call a method and need values in non-preserved
registers

– Whenever you want to use a preserved register and need to keep a
copy

• Fill registers from memory
– To restore previously spilled registers

Memory Layout

• Text: program code

• Static data: global variables

– e.g., static variables in C, constant arrays and
strings

• Dynamic data: heap

– E.g., malloc in C, new in Java

• Stack: “automatic” storage for procedures

Before and after a function

sw $t0, 4($sp)

jal myFunction

lw $t0, 4($sp)

21

Assembly Code

Which register is being

spilled and filled?

A. $ra

B. $t0

C. $sp

D. No register is

spilled/filled

E. No need to spill/fill any

registers

Stack

• Stack of stack frames

– One per pending procedure

• Each stack frame stores

– Where to return to

– Local variables

– Arguments for called functions (if needed)

• Stack pointer points to last record

return address

local var 1
...
local var n

return address

local var 1
...
local var n

...

SP

Process Stack

...

int main () {

 int i = foo();

 print(i);

 return 0;

}

int foo () {

 int n = 10;

 n = bar(n);

 return n;

}

int bar(int n) {

 return n + 2;

}

SP

Process Stack

...

return address

int n

int main () {

 int i = foo();

 print(i);

 return 0;

}

int foo () {

 int n = 10;

 n = bar(n);

 return n;

}

int bar(int n) {

 return n + 2;

}

SP

Process Stack

25

...

return address

int n = 10

int main () {

 int i = foo();

 print(i);

 return 0;

}

int foo () {

 int n = 10;

 n = bar(n);

 return n;

}

int bar(int n) {

 return n + 2;

}

SP

Process Stack

...

return address

int n = 10

return address

int n = 10

int main () {

 int i = foo();

 print(i);

 return 0;

}

int foo () {

 int n = 10;

 n = bar(n);

 return n;

}

int bar(int n) {

 return n + 2;

}

SP

Process Stack

...

return address

int n = 10

return address

int n = 10

int main () {

 int i = foo();

 print(i);

 return 0;

}

int foo () {

 int n = 10;

 n = bar(n);

 return n;

}

int bar(int n) {

 return n + 2;

}

SP

Process Stack

...

return address

int n = 12

int main () {

 int i = foo();

 print(i);

 return 0;

}

int foo () {

 int n = 10;

 n = bar(n);

 return n;

}

int bar(int n) {

 return n + 2;

}

SP

Process Stack

29

...

int main () {

 int i = foo();

 print(i);

 return 0;

}

int foo () {

 int n = 10;

 n = bar(n);

 return n;

}

int bar(int n) {

 return n + 2;

}

SP

To add a variable to the stack in MIPS

• Change the stack pointer $sp to create room on the stack for
the variable

• Use sw to store the variable on the stack

Stack
If you wish to push an integer variable to the top of the stack, which of the
following is true:
A. You should decrement the stack pointer ($sp) by 1

B. You should decrement $sp by 4

C. You should increment $sp by 1

D. You should increment $sp by 4

E. None of the above

Manipulating the Stack

• To Store the contents of $s0 to the stack
– addi $sp, $sp, -4

sw $s0, 0($sp)

• To get the value back from the stack
– lw $s0, 0($sp)

• To “erase” the value from the stack
– addi $sp, $sp, 4

Think-Pair-Share: Why do we spill and fill the return
address when we call a function from inside another

function?

func1:

 . . .

 addi $sp, $sp, -4

 sw $ra, 0($sp)

 jal func2

 lw $ra, 0($sp)

 addi $sp, $sp, 4

 . . .

 jr $ra

A better approach

• In the function “prologue,” reserve space on the stack for all of
the variables and saved registers you’ll need

• Use sw/lw to spill and fill as needed to the space reserved in
the prologue

• In the function “epilogue,” restore any saved registers you
need and update the stack pointer

Complete example

foo:
 addi $sp, $sp, -32 # Allocate space for stack frame
 sw $ra, 28($sp) # Stores (spills) $ra, return address
 sw $s0, 24($sp) # Stores (spills) s0, callee-saved reg
 …
 li $s0, 25 # Set s0 to 25
 sw $t3, 20($sp) # Stores (spills) t3, caller-saved reg
 add $a0, $t1, $t3
 jal myFunction
 lw $t3, 20($sp) # Restores (fills) t3
 …
 lw $s0, 24($sp) # Restores (fills) s0, must restore
 lw $ra, 28($sp) # Restores (fills) $ra, return address
 addi $sp, $sp, 32 # Restore the stack pointer
 jr $ra # Return

Complete example

foo:
 addi $sp, $sp, -32
 sw $ra, 28($sp)
 sw $s0, 24($sp)
 …
 li $s0, 25
 sw $t3, 20($sp)
 add $a0, $t1, $t3
 jal myFunction
 lw $t3, 20($sp)
 …
 lw $s0, 24($sp)
 lw $ra, 28($sp)
 addi $sp, $sp, 32
 jr $ra

$sp + 28 Saved return address $ra

$sp + 24 Saved register $s0

$sp + 20 Saved register $t3

$sp + 16 Unused space to preserve 8-byte alignment

$sp + 12 Space for argument 4 (for use by myFunction)

$sp + 8 Space for argument 3 (for use by myFunction)

$sp + 4 Space for argument 2 (for use by myFunction)

$sp + 0 Space for argument 1 (for use by myFunction)

Stack frame for foo (32 bytes in size)
Arguments are in $a0, …, $a3 and then on the stack at
($sp+32)+16, ($sp+32)+20, … for argument 5, 6, …

Reading

• Next lecture: More stack!

• Problem Set 3 due Friday

• Lab 2 due Monday

50

	Slide 1: CSCI 210: Computer Architecture Lecture 11: Procedures
	Slide 3: CS History: The Subroutine
	Slide 4: Subroutines/functions: A high-level view
	Slide 5: Implications
	Slide 6: Activation Records
	Slide 7: Stack of activation records
	Slide 8: From theory to practice
	Slide 9: Recall from Last Class
	Slide 10: Jump and Link
	Slide 11
	Slide 12: Procedure Call Instructions
	Slide 14: Procedure Calling
	Slide 15: What does a procedure call look like?
	Slide 16: What, if anything, is wrong with this code
	Slide 17: Register values across function calls
	Slide 18: MIPS Register Convention
	Slide 19: “Spill” and “Fill”
	Slide 20: Memory Layout
	Slide 21: Before and after a function
	Slide 22: Stack
	Slide 23: Process Stack
	Slide 24: Process Stack
	Slide 25: Process Stack
	Slide 26: Process Stack
	Slide 27: Process Stack
	Slide 28: Process Stack
	Slide 29: Process Stack
	Slide 30: To add a variable to the stack in MIPS
	Slide 31: Stack
	Slide 32: Manipulating the Stack
	Slide 33: Think-Pair-Share: Why do we spill and fill the return address when we call a function from inside another function?
	Slide 34: A better approach
	Slide 35: Complete example
	Slide 36: Complete example
	Slide 50: Reading

